NLC - The Next Linear Collider Project

Accelerator Test Facility at KEK

Linear Collider Damping Ring Prototype

ATF is the only test facility with ~LC emittance

Marc Ross

Next Linear Collider

From the SLC to the NLC

(from D. Burke)

• Two Issues...

– Energy	x 10	beyond SLC
– Luminosity	x 10,000	beyond SLC

- Experience basis of NLC/JLC
 - ATF creation of low emittance beams
 - NLCTA X-band technology
 - FFTB manipulate, focus and measure
 - ASSET multi-bunch emittance preservation
 - SLC

•Collective effects:

- -Intra-beam scattering
- -Space charge tune shift
- -Two-stream
- -Impedance driven

(this talk)
(TESLA 17 km 'ring')
(fast ion/electron cloud – B factory)
(SLC 'sawtooth')

ATF is intended to test the above

Damping ring comparison – design parameters

	NLC MDR 120Hz	ALS	ATF	SLC
E (GeV)	1.98	1.9	1.28	1.19
С	299.792 m	196.7 m	138.6 m	35.3 m
Lattice	36 cell TME	12 cell TBA	36 cell FOBODO	22 FODO
E_X _{eq}	0.560 nm rad	5.60 nm rad	1.4 nm rad	18.2 nm rad
t_x, t_y, t_z	4.85, 5.09, 2.61 ms	15, 21, 13.5 ms	12, 17, 11 ms	3.06
U/turn (bend/ID)	247 keV, 530 keV	250 keV, 20 keV	41.4 keV, 29 keV	93.1 keV
σ_z / δ	3.60 mm / 0.1%	6.00 mm / 0.08%	6 mm / 0.06%	8 mm / 0.07%
α	2.95×10-4	1.62×10-3	2.14×10-3	0.018
G _v / acceptance	1.07 MV, 1.5%	1.1 MV, 3%	0.3 MV, 1%	0.8 MV, 1%
Coupling	0.5%	3% (0.5%)	0.6%	~ 10%
Bunch Charge	0.75×10 ¹⁰ / 1.5×10 ¹⁰	0.60×10 ¹⁰	1.0×10 ¹⁰	4×10 ¹⁰
Lifetime	minutes?	4.6 hours	~5 minutes	10's of minutes

ATF studies:

- Single bunch emittance
 - Evidence for intra-beam scattering
 - Correction schemes
- Emittance measurements
- Planned single bunch
- Instrumentation RD at ATF
- Multi bunch

Emittance:

ÓP

		8 <i>y</i>	
– NLC spec:	3e-6	2e-8 m	-rad
– ATF achieved:	5e-6	бе-8	
– ATF expected	5e-6	<1e-8	(0.1% cpl)

VP

Single bunch; 1.28 GeV; 1e10 ppb (NLC: 1.98 GeV; 8e9)

Minimum theoretically possible emittance \rightarrow SR opening angle $ge_v \sim 5e-10$ (0.2 pm for ATF)

What are important emittance issues?

- -ring dispersion / coupling correction
- -intra-beam scattering
- -extraction line optical aberration correction
- -instrumentation

8/30/01

Accelerator Test Facility - KEK

KEKの敷地内に運転中のJLCのための試験加速器

Collective effects – single bunch

Cause either coherent instability or incoherent emittance growth

- Intra-beam scattering
 - Key topic of ATF work

-11

- Low energy (1.3GeV)
- poor damping (w/o EM wigglers)
- excellent extracted beam energy spread diagnostic
- more studied at proton machines (primary *L* limit in RHIC)
- important single bunch emittance driver for NLC
- no threshold: dependence on bunch volume
- Potential well distortion
- "Microwave" instability
 - serious problem at SLC
 - worse with 'strong' but still a problem with 'weak'
 - definite threshold observed
 - Not expected at ATF

8/30/01

Evolution of energy spread following injection for I : 1.6e9 4.8e9 8.0e9 0.6 1.7 2.8 mA

Evidence for IBS – vertical coupling into **s**_E

Sequence:

- Vertical still large no effect on x and E
- Vertical damped increase in x and E
- minimum at 70ms (2.5 τ rad)

Simulation consistent when coupling \rightarrow

 $\varepsilon_v / \varepsilon_x = 0.006$

 $\sigma_{\text{E/E}}$ measured using extraction line screen

Data from 3 days: Variation due to tuning & screen monitor performance

 Zero current energy spread
 ~ 5.5e-4 is close to expected.

Energy spread vs I

Energy spread on/off **n_x=n_y** coupling resonance – showing IBS effect

8/30/01

- e_y inconsistent with expectations
- ?
 - IBS theory/simulations
 - coupling/emittance dilution in extraction line
 - measurement related errors

Emittance vs energy spread

sigE/E

negative correlation between ϵ_y and δ shows that η is not dominant in ϵ_y measurement

8/30/01

Intra-beam scattering - e growth mechanism

Beam phase space temperatures in rest frame: 7000:35:1 (x, y, z)

- energy flows into z from x diffusion
- kicks back into *x* where $\eta \neq 0$
 - η ≠ 0: off-energy particles are not on equilibrium trajectory following energy exchange
 - \rightarrow effective transverse kick
 - \rightarrow emittance growth
- if $\eta = 0$; no harm done
- effect on ϵ_y ?
- Similar to synchrotron radiation

- growth rate = damping rate at equilibrium
- collisions involve energy exchange between particles
- but: SR from bends only; IBS everywhere
- also: IBS interaction with other collective effects

Intra-beam scattering – theory

- small transfer approximation of Touschek lifetime
 - limitation in SR sources
- Bjorken & Mtingwa + Piwinski + LeDuff
 - *x*-*y* coupling and microwave related σ_z distortion not included in most simulations
 - interaction with other instabilities
- Factor 2 discrepancy for proton machines
 - depending on model
 - (RHIC, p_bar, V/LHC with ions)
- Tail generation (should be important for downstream users)
 - cut-off parameter introduced
 - reduces computed 'rms' emittance by 30%

IBS – relative growth rate

$$H = \left[\eta^{2} + (\beta \eta' + \alpha \eta)^{2}\right] / \beta \quad \frac{dispersion}{invariant}$$

Zero current emittance – determined by SR in bends

Emittance growth from IBS – determined by dispersion throughout

for emittance generated through residual **h** as opposed to residual coupling Divide and assume that there is nothing special about \mathbf{h}_{v} in the bends

 $\left\langle H_{y}\right\rangle_{R} \approx \left\langle H_{y}\right\rangle$

 $\frac{\langle H_x \rangle_{bends}}{\langle H_x \rangle} = \frac{(\varepsilon_y - \varepsilon_{y0}) / \varepsilon_{y0}}{(\varepsilon_x - \varepsilon_{x0}) / \varepsilon_{x0}}$

(Tor & Kubo)

Dispersion invariant – *H* – for ATF and NLC design

$$\frac{\langle H \rangle_{bends}}{\langle H \rangle} = 1.6 @ ATF$$
$$\frac{\langle H \rangle_{bends}}{\langle H \rangle} = 0.64 @ NLC$$

Emittance results

- ε_y0 extrapolation is poor
- Observed energy spread & horizontal emittance growth indicates a 2 3 x smaller vertical emittance than observed
- Growth ratio shows a similar factor
- measurements made 4/00 to 6/01

Table of emittance measurements: (e-9/e-11 x/y, not normalized)

		e_x0	e_x	e_y0	e_y	r
extracted	wires 4/00	1	1.85	1	3	2.35
extracted	Dec-00	1.1	2.2	1.7	4	1.35
extracted	Feb-01	1.1	2.2	0.7	2.8	3.00
extracted	Apr-01	1	2.4	1.2	2.5	0.77
extracted	Jun-01	1.2	2.1	0.9	2.3	2
ring	L wire	1.1	2.2	0.7	1.9	1.71

• IBS:
$$1 < r < 1.6$$
 (ATF)
x/y cpl **h**_y $r = \frac{(\varepsilon_y - \varepsilon_{y0}) / \varepsilon_{y0}}{(\varepsilon_x - \varepsilon_{x0}) / \varepsilon_{x0}}$

Constraints on measurement/optical errors from estimate of *r*

• for example – a coupled mixture, as would be generated by a skew quad

$$\varepsilon_{\text{ymeas}} = \varepsilon_{\text{yreal}} + k\varepsilon_x$$

(*k* independent of I)

• only makes sense if:

$$\frac{\mathbf{\varepsilon}_{y}}{\mathbf{\varepsilon}_{y0}} < \frac{\mathbf{\varepsilon}_{x}}{\mathbf{\varepsilon}_{x0}}$$

• inconsistent with 00/01 data

Orbit correction/emittance optimization

K. Kubo

Simulated vertical emittance after each correction

	Average	<1.1E-11 rad-m
COD	2.28	20 %
	(E-11 rad-m)	
V COD-dispersion	1.67	51 %
Coupling	0.58	91 %

Misalignment : as measured

+ random 30 micron offset

+ random 0.3 mrad. rotation

BPM error : offset 300 micron, rotation 0.02rad.

Random seed 'SAD' simulation results

8/30/01

- Raw BPM readings
- Energy spread measurement an excellent practical indicator of convergence

$$\eta_{rms} \approx 3mm$$

Each quad has an independent trim Refit model for each qtrim setting \rightarrow for each of several local bump amplitudes, measure/fit qtrim kick:

Data

Repeatbility – not tested # BPMs ~100

Name	Data	Y Offset w.r.t. nearest
INAILIE	Taken On	BPM (µm)
QM17R.2	01APR18	-500.2 ± 24.9
QF2R.10	01APR26	$+52.5 \pm 11.9$
QF2R.11	01MAY15	-161.6 ± 7.0
QF2R.12	01MAY15	-612.3 ± 25.9
QF2R.13	01MAY15	$+160.9 \pm 10.2$
QM16R.2	01MAY15	-0.4 ± 4.2

VZ OCC

Summary – single bunch low emittance

- relative growth <u>not</u> explained by aberrations in extraction line
- ring simulation indicates unreasonably small vertical emittance
- ring tuning relies on poorly optimized BPM system
- Plans: \rightarrow reduce coupling and speed up optimization
 - complete ring beam-based alignment
 - How realistic is the simulation input?
 - In particular the rotation estimates of ~ 1 degree for BPMs
 - BPM system improvements
 - extraction line (RF dipole mode cavity BPMs)
 - ring

- ZDR prediction for ε_x
 @ 2 GeV: ~ 20% growth at 1e10
 - What is the impact of the ATF result on the NLC damping ring design?
- ε_{yo} is too high
 - coupling and dispersion correction
 - BPM resolution and beam-based alignment
 - understanding of low intensity, low emittance instrument resolution
- Simulation done with equilibrium beam – not extracted beam (1.4 x)

$$r = \frac{(\varepsilon_{y} - \varepsilon_{y0}) / \varepsilon_{y0}}{(\varepsilon_{x} - \varepsilon_{x0}) / \varepsilon_{x0}}$$

Single bunch study plans

 NLC_{95}

- wire scanners in the extraction line...
 - few micron beam size resolution
 - 2-3 micron beam jitter
 - control of *h* to few mm
- laserwire in the ring...
- energy spread extraction line optics
- SR monitor (results not included)

Stability of beam size measurement by wire scanners

8/30/01

SR monitor optics set-up

2nd SR port in Oct. 2000

Synchrotron radiation interferometer

- measure depth of 2 slit modulation vs slit spacing
- 6.2 um
- ε_y ~ 1.6 e-11
- beats diffraction limit by ~ 6x
- Problems:
 - centering
 - stability (esp. vibration
 - mirror damage
 - no light at large angles (also apertures)

One scattered particle per 2000 turns

Ring laserwire raw data

Data taking procedure

Count rate on each comparator level on 1 run

Comparator ~ compton energy discriminator

Written by H.Sakai

Ring Laserwire monitor

- Resonant cavity close to focus cut-off
 - uses CW laser
 - cavity gain 300
 - measurement ~ 1 hour

Development of a transition radiation profile monitor -OTR

- some controversy over minimum resolvable beam image
 - achieved 7µm (12/00) well beyond purported limit – OTR provides light at very large angles → high resolution
 - much better than synchrotron radiation
 - smallest OTR spot imaged to date
- theoretical limit: ~ λ
- Parameters for ATF OTR (built at SLAC)
 - resolution $-2\mu m$
 - field of view $-300 \times 200 \,\mu\text{m}$ (or $\sim 2x$)
 - depth of field 8 µm vertical displacement
 - OK light for normal camera 5e9 ppb
 - Industrial microscope objective
 - 35 mm working distance
 - various target materials

SLAC-built very high resolution OTR

← 0.5mm→ 10 μm σ_y

successive images illustrating damage:

OTR images & target damage

Be OTR and wire scanner vs I

8/30/01

Quad-emittance scan – OTR and nearby wire scanner

Device	$\boldsymbol{\epsilon}_{\mathrm{v}}$	Comments
OTR	$27 \pm 1 \text{ pm}$	quad scan
OTR no tilt	$18 \pm 1 \text{ pm}$	Tilt removed from Y scans
M W 3 X	$22 \pm 1 \text{ pm}$	quad scan
M W 4 X	$28 \pm 1 \text{ pm}$	quad scan
5 wire	$26 \pm 1 \text{ pm}$	multi-wire scan

ATF loss monitor counter installation

BESSY loss monitors mounted in pairs to count Touschek coincidences

Multi-bunch operation

Multi-bunch intensity *vs* time

ATF multi-bunch parameters:

•up to 4 each 20-bunch trains -0.25
•bunch spacing 2.8 ns
•typical I/bunch ~ 1/4 of single bunch ops

Focus so far:
Instrumentation
Throughput
Source / linac loading compensation
Gun pulser distortion

Multi-bunch operationextraction line wire scans

MW0X Y profiles

MW3X Y profiles

Multi-bunch operationextraction line wire scans

- 20 bunches; typical single bunch Imax ~
 2.5e9 (4x lower than single bunch
- ε_y increases 1.5x
- vacuum system improved 2001

ATF Operation

- ATF operates 20 weeks/year for a 4 1/3 day block /week
 - ~ 2 wks on/ 2 wks off (startup effects are significant)
- Users (~ students) get about 1/4 time
 - <u>Effective uptime ~ 55 days/year</u>
- Stability is critical for ~10 pm emittance
 - Typical beam sizes are $50 \times 8 \mu m$
- Single shot BPM resolution is $\sim 15 \mu m$
- Beam pulse rate is 1.5 Hz

-

• Precise measurements require long periods of checking/setup

ATF Support

- Operation is limited by funds (KEK) and manpower (KEK)
 - ~ 10 physicists (6 FTE) + <u>8 graduate students</u>
 - SLAC participation began 1997
 - 1 FTE average by ~ 8 SLAC staff travelling to ATF
 - ~ 100K\$ / year for hardware development
 - Contributions from Japanese universities and BINP/Protvino
 - Minimal involvement from other labs (CERN, DESY...)

ATF Plans

- ATF is the <u>only</u> LC test facility with capability for transverse beam dynamics studies
 - collective effects, tolerances, optimization, control, stability, technology...
 - dynamics of small beams is critical for <u>all</u> proposed LCs
- ATF will be used for pioneering physics research and engineering development studies
 - We must examine ways to extend ATF for the study of LC emittance propagation

SLAC- KEK/ATF team:

	浦川	順治	荒木	栄
Scott Anderson	早野		大森	恒彦
Karl Bane Joe Frisch	久保	浄	阪井	寬志
Keith Jobe	黒田	 茂	酒井	いずみ
Doug McCormick Bobby McKee	照沼	信浩	今井	貴之
Janice Nelson	内藤	孝	福田	将史
Tonee Smith	栗木	" 雅夫	本田	☆洋介
Jim Turner Mark Woodley	奥木	^狼 八 敏行	武藤	世月 俊哉
Jerry Yocky				
	峠 劇	另	P. Ka	rataev

(____ \rightarrow helped with presentation)

8/30/01