Collimation System

Innovative Optics Wakefield Experiments

Hardware Development Material Damage Studies

Detector free of machine backgrounds Headroom against collimator wakefields Hardware robust against lost beam

TRC Collimator Study Finding Excellent Efficiency

Single Pulse Material Damage Studies Fundamental R&D for Optics Design

30 GeV Beam with 3–20x109 e- $\times \sigma_y^2$ – 45 – 200um² $\times \tau_y$ – 1 mm Damage: beam densities>7x10¹⁴ e-/cm² Picture is for 6x10¹⁵ e-/cm² NLC is 7.5 x 10¹⁶ e-/cm²

Rotating Collimator Spoilers

Thin hi-Z SPOILERS with tapered low resistivity surface and 1000 x 1mm damage-able circumference

Measure Collimator Wakefields

Tail-folding Octupoles Same Efficiency with 3x larger collimator gaps and x10 reduced wakefields

Backgrounds

IP Backgrounds Controlled with Masks, Shielding, Solenoid Field, Detector Granularity and Detector Timing

Beamstrahlung y make e+e- pairs and hadrons # pairs proportional to LUMINOSITY VXD, Tracker and Main (>40 mrad) calorimeter occupancy <~1% even integrating 192 bunches

Detector Readout

CCD VXD: Read out in 8 ms inter train gap: No pile up, No RF pickup

Silicon Tracker and Si-EM Calorimeter (0>40 mrad):

- 1 measurement with time tag per train
- 50 ns rise time and x10 S/N \longrightarrow 5ns/pixel
 - --- ~1ns per Em cluster or track
- ea.:Kloe calorimeter 200 ps resolution

Pair Detector (0-40 mrad) will have per-bunch measurement for good electron ID

- R&D required and in progress (ALCPG Beam Instr. Group)
 eg. Fast detector technology (thin hi-field Si or Cerenkov) → switched capacitor array → smart readout

Muon Backgrounds

Design for 1 per mil halo (x1000 expected)

Tunnel-filling spoilers reduce μ rate by greater than x1000 and protect detector and personnel in both IRs independent of muon source

12,180 μ/train for 0.1% halo reduced to 7 μ/train

9 & 18m Toroid Spoiler Walls