The Enriched Xenon Observatory

Michelle Dolinski
Stanford University
for the EXO Collaboration

CIPANP 2009
The Enriched Xenon Observatory (EXO)

The goal of EXO is to search for neutrinoless double beta decay of ^{136}Xe using a large-scale Xe detector with Ba$^+$ tagging.

Motivation for the EXO detector

Ba$^+$ tagging

- Ba$^+$ trapping
- Daughter ion extraction

Ton-scale Xe detector technologies

- Liquid-phase research and development
- Gas-phase research and development

EXO-200 detector

- Recent progress
- Schedule
Sensitivity

\[S_{1/2}^{0\nu} \propto \varepsilon \frac{a}{A} \left[\frac{MT}{B\Gamma} \right]^{1/2} \]

\(\varepsilon \) is efficiency
\(a \) is isotopic abundance
\(A \) is atomic mass
\(M \) is source mass
\(T \) is time
\(B \) is background
\(\Gamma \) is resolution

To maximize sensitivity:
- Large mass
- Low background
- High detection efficiency
- Good energy resolution

In addition, identification of the daughter isotope would reject most sources of background and confirm double beta decay.
Choice of isotope

EXO will search for the decay:
\[^{136}\text{Xe} \rightarrow ^{136}\text{Ba} + 2\text{e}^- \]

\[T^{0v}_{1/2} > 1.2 \times 10^{24} \text{ y (90\% C.L.)} \]

Natural isotopic abundance of 8.9 %
- Inexpensive enrichment

Q-value of 2479 keV
- Favorable phase space
- Above most naturally occurring \(\gamma \)-rays

Ba$^+$ tagging

$^{136}\text{Xe} \rightarrow ^{136}\text{Ba}^{++} + 2\text{e}^-$

- Ba$^+$ system best studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980)
- Very specific signature
- Single ions can be detected from a photon rate of 10^7/s

Ba$^+$ tagging would allow for the elimination of all backgrounds except the background from $2\nu\beta\beta$.
Trapping

\[V \cos(\Omega t) + U \]

- Ba oven
- Ba
- Buffer gas

CCD

Spectroscopy

lasers

Scope

DC potential [V]

- 0 Volts
- -5 Volts

Michelle Dolinski

5/26/2009
Trapping

- Loading region in the vacuum tank
- Tip loading access
- Main turbo port
- Ba oven
- e-gun
- Differentially pumped aperture

~9σ discrimination in 25s integration

B. Flatt et al., NIM A 578 (2007) 409
Advantages of LXe detector:
 - Compact detector
 - Low background

Development:
 - EXO-200
 - Ba\(^{+}\) extraction probes

Ionization alone:
\[\sigma(E)/E = 3.8\% \text{ @ } 570 \text{ keV} \]
 or \[\sigma(E)/E = 1.8\% \text{ @ } Q_{\beta\beta} \]

Ionization & Scintillation:
\[\sigma(E)/E = 3.0\% \text{ @ } 570 \text{ keV} \]
 or \[\sigma(E)/E = 1.4\% \text{ @ } Q_{\beta\beta} \]

Ba\(^+\) extraction - Liquid phase

Cryogenic probe

Resonance-ionization spectroscopy (RIS)

Michelle Dolinski 5/26/2009
Gas-phase R&D

Advantages of GXe detector:
- Improved resolution
- Tracking capabilities
- Possible in situ ID of Ba\(^+\) daughter

Development:
- Gas TPCs at Gotthard and Laurentian University
Barium ions are guided towards the exit orifice and focused using a high-field asymmetric waveform technique. The second chamber is maintained at a pressure of ~10-30 mb using a cryopump and is lined with an RF carpet. An RF funnel guides the ions towards the RF quadrupole which is at high vacuum.
EXO-200: Enriched Xe

The EXO collaboration has 200 kg of Xe, enriched to 80% in 136Xe.
EXO-200: Detector

HFE7000 cooling/shielding fluid

~1.5m
EXO-200 TPC

X and Y wire grids provide position-sensitive collection of ionization. LAAPDs collect scintillation signal and give timing information.
Copper vessel
TPC halves
Flex cables
EXO-200 detector
Cryogenics

Commissioning of cryogenics at WIPP is currently underway.

Cryo-commissioning at Stanford, Spring 2007
WIPP

Waste Isolation Pilot Plant in Carlsbad, NM.
Salt mine and low level radioactive waste storage.

~1600 m.w.e. flat overburden.
Background

Massive effort on material radioactive qualification using:

- Neutron activation analysis
- Low background γ-ray spectroscopy
- α-counting
- Radon counting
- High sensitivity GD-MS and ICP-MS

At present the database of characterized materials includes >300 entries.

NIM article published on the subject with entries for 225 materials

<table>
<thead>
<tr>
<th>Case</th>
<th>Mass (ton)</th>
<th>Eff. (%)</th>
<th>Run Time (yr)</th>
<th>σ_E/E @ 2.5MeV (%)</th>
<th>Radioactive Background (events)</th>
<th>T_{1/2}^{0ν} (yr, 90%CL)</th>
<th>Majorana mass (eV)</th>
<th>QRPA</th>
<th>NSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXO-200</td>
<td>0.2</td>
<td>70</td>
<td>2</td>
<td>1.6</td>
<td>40</td>
<td>6.4 x 10^{25}</td>
<td>0.133†</td>
<td>0.186*</td>
<td></td>
</tr>
</tbody>
</table>

*Caurier, et. al., arXiv:0709.2137v1
2νββ of 136Xe has never been observed.

<table>
<thead>
<tr>
<th></th>
<th>$T_{1/2}$ (yr)</th>
<th>evts/year in EXO-200 (no efficiency applied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuscher et al</td>
<td>$>3.6\times10^{20}$</td>
<td><1.3 M</td>
</tr>
<tr>
<td>Gavriljuk et al</td>
<td>$>8.1\times10^{20}$</td>
<td><0.6 M</td>
</tr>
<tr>
<td>Bernabei et al</td>
<td>$>1.0\times10^{22}$</td>
<td><48 k</td>
</tr>
<tr>
<td>Theoretical prediction [$T_{1/2}^{\max}$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRPA (Staudt et al)</td>
<td>$=2.1\times10^{22}$</td>
<td>$=23$ k</td>
</tr>
<tr>
<td>QRPA (Vogel et al)</td>
<td>$=8.4\times10^{20}$</td>
<td>$=0.58$ M</td>
</tr>
<tr>
<td>NSM (Caurier et al)</td>
<td>($=2.1\times10^{21}$)</td>
<td>($=0.23$ M)</td>
</tr>
</tbody>
</table>

Excellent prospects for detection of the 2ν decay mode in EXO-200.
Sensitivity of full EXO

Assumptions:
1) 80% enrichment in 136Xe
2) Intrinsic low background + Ba tagging eliminate all radioactive background
3) Energy resolution only used to separate the 0v from 2v modes:
 Select 0ν events in a ±2σ interval centered around the 2.481MeV endpoint
4) Use for 2νββ $T_{1/2} > 1 \cdot 10^{22}$yr (Bernabei et al. measurement)

<table>
<thead>
<tr>
<th>Case</th>
<th>Mass (ton)</th>
<th>Eff. (%)</th>
<th>Run Time (yr)</th>
<th>$\sigma_E/E @ 2.5$MeV (%)</th>
<th>2νββ Background (events)</th>
<th>$T_{1/2}^{0\nu}$ (yr, 90%CL)</th>
<th>Majorana mass (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative</td>
<td>1</td>
<td>70</td>
<td>5</td>
<td>1.6</td>
<td>0.5 (use 1)</td>
<td>2×10^{27}</td>
<td>24</td>
</tr>
<tr>
<td>Aggressive</td>
<td>10</td>
<td>70</td>
<td>10</td>
<td>1</td>
<td>0.7 (use 1)</td>
<td>4.1×10^{28}</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Caurier, et. al., arXiv:0709.2137v1
EXO-200 detector assembly complete, installation at WIPP in 2009.

First physics data by the end of the year. The results will determine the future direction of the EXO program.

Continuing development of Ba$^+$ tagging technologies.

Work is going forward on gas-phase Xe detectors.
Collaboration

K.Barry, E.Niner, A.Piepke
Physics Dept., U. of Alabama, Tuscaloosa AL, USA
P.Vogel
Physics Dept., Caltech, Pasadena CA, USA
A.Bellerive, M.Bowcock, M.Dixit, K.Graham, C.Hargrove, E.Rollin, D.Sinclair, V.Strickland
Carleton University, Ottawa, Canada
C.Benitez-Medina, S.Cook, W.Fairbank Jr., K.Hall, B.Mong
Colorado State U., Fort Collins CO, USA
M.Moe
Physics Dept., UC Irvine, Irvine CA, USA
ITEP Moscow, Russia
Laurentian U., Canada

H.Breuer, C.Hall, L.Kaufman, D.Leonard, S.Slutsky, Y-R.Yen
U. of Maryland, College Park MD, USA
K.Kumar, A.Pocar
U. of Massachusetts, Amherst, Amherst MA, USA
M.Auger, G.Giroux, R.Gornea, F.Juget, G.Lutter, J-L.Vuilleumier
Laboratory for High Energy Physics, Bern, Switzerland
SLAC, Menlo Park CA, USA
L.Bartoszek, R.Cooper, R.DeVoe, M.Dolinski, B.Flatt, G.Gratta, M.Green, F.LePort, M.Montero-Diez, R.Neilson, A.Reimer-Muller, A.Rivas, K.O'Sullivan, K.Twelker
Physics Dept., Stanford University, Stanford CA USA