EXO-200 Status

David Auty for the EXO Collaboration
University of Alabama
18th July 2011
Overview

• Motivation
 – Knowledge of neutrinos
 – What is $\beta\beta$ decay

• EXO
 – Why Xe136
 – WIPP
 – Commissioning
What do we know about neutrino mass assuming three flavors?

From experiments using solar ν and reactor $\bar{\nu}$:

$$\Delta m^2_{21} = \Delta m^2_{\text{sol}} = \left(7.59 \pm 0.21\right) \cdot 10^{-5} \text{ eV}^2$$

$$\sin^2 (2\theta_{12}) = \sin^2 (2\theta_{\text{sol}}) = 0.861^{+0.026}_{-0.022}$$

From experiments using atmospheric and accelerator ν:

$$\Delta m^2_{32} = \Delta m^2_{\text{atm}} = \pm\left(2.42 \pm 0.13\right) \cdot 10^{-3} \text{ eV}^2$$

$$\sin^2 (2\theta_{23}) = \sin^2 (2\theta_{\text{atm}}) > 0.92^{[i]}$$

From experiments using reactor $\bar{\nu}$:

$$\sin^2 (2\theta_{13}) = 0.09^{+0.13}_{-0.09}$$

K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010)
Our knowledge of the ν mass pattern

- ~ 2.3 eV
- ~ 0.3 eV
- $\sim 3 \cdot 10^{-3}$ eV2
- Solar $\sim 8 \cdot 10^{-5}$ eV2
- Atmospheric $\sim 3 \cdot 10^{-3}$ eV2
- Majorana
- From tritium endpoint (Mainz and Troitsk)
- From $0^{\nu}\beta\beta$
- From ν is Majorana
- From WMAP
- Time of flight from SN1987A (PDG 2002)

David Auty INFO 11
From neutrino oscillations we know

- Neutrinos have mass
- There masses are not the same
- Some mixing and parameters of the flavour states

We don’t know

- The absolute masses of the eigen states
- Whether the neutrino is Dirac or Majorana
- Some mixing and parameters of the flavour states
Neutrino Mass Scale

Current \(0\nu\beta\beta\) sensitivity
Claim by Klapdor-Kleingrothaus et al.
MPLA 21, 2006.

Inverted

Quasi-degenerate

Normal

\[\Delta m^2_{23} < 0 \]

\[\Delta m^2_{23} > 0 \]

50 meV

\[\frac{\Delta m^2_{23}}{\text{in eV}} \]

\[\frac{\Delta m_{ee}}{\text{in eV}} \]

\(\frac{m_{ee}}{\text{in eV}} \)

\[\text{lightest neutrino mass in eV} \]

[Strumia and Vissani, hep-ph/0606054]
Neutrino Mass Scale
What is double β decay

- A second order weak interaction where two neutrons turn into two protons
- Only allowed for nuclei where beta decay is energetically forbidden or highly suppressed due to a large angular momentum difference
2 ways for $\beta\beta$ to occur

$\Delta B = 0$

$\Delta L = 0$

$\Delta (B-L) = 0$

There are other mechanisms like Super Symmetry, right handed currents that can contribute.

$\Delta B = 0$

$\Delta L = 2$

$\Delta (B-L) = -2$

Observed for ~ 10 nuclides.
Half life $10^{18} - 10^{21}$ y
Measured rates used to test nuclear models.
How to way lepton mass

• Measurement of energy distribution of charged Leptons in weak decays.
 \[\langle m \rangle_\beta^2 = \sum_i |U_{ei}|^2 m_i^2 \]

• Neutrino-less double decay (Dirac versus Majorana).
 \[\langle m \rangle_{\beta\beta}^2 = \left| \sum_i \eta_i U_{ei}^2 m_i \right|^2 \]

It turns out that nuclear double beta decay is the only practical way to distinguish Dirac from Majorana neutrinos.
What do we measure

\[(T_{1/2}^{2\nu})^{-1} = G^{2\nu} |M^{2\nu}|^2 \]

Cancellation of contributions of virtual intermediate states.
Measured for many nuclides.
Not directly relevant to \(\beta\beta^{0\nu} \), calibrates nuclear models

\[(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \cdot |M^{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle^2 \]

Nuclear matrix element by calculations. Uncertainty?
spread of all values in literature: factor \(\sim 3 \).
Halflife $T_{1/2}$ in 10^{27} years for $\langle m_{\beta\beta} \rangle = 20$ meV

$T_{1/2}$ scales as $(\langle m_{\beta\beta} \rangle)^{-2}$

Note: For ^{76}Ge the NSM entry 12.9×10^{27} years is not plotted
How do we Measure the Rate?

To maximize sensitivity:
- Large mass
- Low background
- High detection efficiency
- Good energy resolution

\[S_{1/2}^{0\nu} \propto \varepsilon \frac{a}{A} \left[\frac{MT}{B\Gamma} \right]^{1/2} \]

- \(\varepsilon \) is efficiency
- \(a \) is isotopic abundance
- \(A \) is atomic mass
- \(M \) is source mass
- \(T \) is time
- \(B \) is background
- \(\Gamma \) is resolution

Summed electron energy in units of the kinematic endpoint (Q)

\(\beta \beta 2\nu \) spectrum (normalized to 1)

\(0\nu \beta \beta \) peak (5% FWHM) (normalized to \(10^{-6} \))

\(\beta \beta 0\nu \) signal (5% FWHM) (normalized to \(10^{-2} \))
Elements that decay via $\beta\beta$ emission with a Q value above 2MeV

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Q (MeV)</th>
<th>Abund. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48Ca\rightarrow^{48}Ti</td>
<td>4.271</td>
<td>0.187</td>
</tr>
<tr>
<td>76Ge\rightarrow^{76}Se</td>
<td>2.040</td>
<td>7.8</td>
</tr>
<tr>
<td>82Se\rightarrow^{82}Kr</td>
<td>2.995</td>
<td>9.2</td>
</tr>
<tr>
<td>96Zr\rightarrow^{96}Mo</td>
<td>3.350</td>
<td>2.8</td>
</tr>
<tr>
<td>100Mo\rightarrow^{100}Ru</td>
<td>3.034</td>
<td>9.6</td>
</tr>
<tr>
<td>110Pd\rightarrow^{110}Cd</td>
<td>2.013</td>
<td>11.8</td>
</tr>
<tr>
<td>116Cd\rightarrow^{116}Sn</td>
<td>2.802</td>
<td>7.5</td>
</tr>
<tr>
<td>124Sn\rightarrow^{124}Te</td>
<td>2.228</td>
<td>5.64</td>
</tr>
<tr>
<td>130Te\rightarrow^{130}Xe</td>
<td>2.533</td>
<td>34.5</td>
</tr>
<tr>
<td>136Xe\rightarrow^{136}Ba</td>
<td>2.458</td>
<td>8.9</td>
</tr>
<tr>
<td>150Nd\rightarrow^{150}Sm</td>
<td>3.367</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Why 136Xe?

- Reasonable Q-value of 2457.8 ± 0.4 keV
- Active detection medium in both liquid and gaseous phase. Suited for charge collection plus high yield UV scintillator (@ 3 kV/cm ~25 ph/keV, ~50 e/keV, anti-correlated\(^1\)). No crystal growth needed.
- Isotope 136Xe has reasonable natural abundance 8.9%.
- No chemistry needed.
- Noble gas, isotopic enrichment by ultra centrifugation cost effective.
- Xenon can be re-purified during operation and moved to different detector
- Ionization potentials Xe: 12.130 eV, Ba\(^+\): 5.212 eV, Ba\(^{++}\): 10.004 eV → bb-decay product atom remains charged → opens possibility of Ba removal and final state tagging through Ba single ion detection
EXO-200: the first 200 kg $\beta\beta0\nu$ experiment

- 25 cm Pb
- 5 cm Cu cryostat
- 50 cm cryogenic fluid HFE-7000
- Thin walled Cu TPC
- 5 cm Pb
EXO-200

Make use of the fact that Xenon is relatively cheap to enrich, allows drifting of charges, scintillates and may admit identification of the Ba final state in a later phase. Use a TPC for 3d reconstruction of charge tracks, discriminate single site e-events from multi site γ events.

To achieve a compact experiment use liquid Xenon (3 g/cm3). Read out both ionization and scintillation to optimize energy resolution and obtain particle ID. Resolution at $Q_{\beta\beta}$: 1.4% or 37 keV (σ).

Build the detector exclusively from radio-screened materials and components to achieve low background. More than 450 material analyses by ICPMS, NAA, counting, Rn emanation. Develop Ba removal and tagging in parallel in the lab.
WIPP

- EXO-200 is sited at the Waste Isolation Pilot Plant in Carlsbad, NM, a radioactive waste disposal facility located 2150 ft underground in a salt deposit
- ~1600 m water equivalent flat overburden [Esch et al., *NIM A538*, 516(2005)]
- Relatively low levels of U and Th (measurements < 100 ppb in EXO-200 drift), Rn (~20 Bq/m³)
EXO (Drift E-300)
EXO detection strategy

detect the 2 electrons (ionization + scintillation in xenon detector)

136Xe $\rightarrow ^{136}$Ba$^{++}$ + 2e$^{-}$ (+ 2ν_e)

positively identify daughter via optical spectroscopy of Ba$^+$

other Ba$^+$ identification strategies are also being investigated within the EXO collaboration
EXO-200 Detection Scheme

- **Timing of the event:**
 Scintillation light gives $t = 0$ for drift time (z)

- **Position of the event:**
 Crossed wires at the anode (u-v) collect charge at $t=z$

- **Event energy:**
 Ionization + scintillation light
Charge Detection

- Double-ended TPC chamber with ~20 cm drift regions. In Xe about 50 e/keV → at 2458 keV results in 124,000 e-, into 1 pF equivalent charge amplifier 20 mV signal → amplify by factor 10 using shaping amplifier. Noise is ~700 e.
- Mid-plane cathode can be biased up to -75 kV
- 38 Inductive “V” wires per side at -4 kV, 100% charge transparent.
- 38 “U” wires at virtual ground to collect the charge.
- LXE electron mobility ~2000 cm²/(Vs)
- Saturation velocity ~ 0.28 cm/μs
- Long electron lifetime is required to minimise charge loss.
Light Detection

- 516 16 mm (active area) APD’s (Avalanche Photo Diodes).
- QE measured to be 120% at 175 nm by NIST.
- Geometrical photo-coverage ~17%.
- Read-out: gangs of seven APD’s
- Yield enhanced by reflective Teflon reflectors in TPC.
- Charge amplifier 5 pF per gang of seven.
- Low gain (compared to PMT’s), of ~100.
- Clean materials, mostly refined silicon.
- Connections made by contact springs for easy maintenance.
EXO-200 TPC and cryostat

- Inner cryostat filled with 50 cm HFE7000 cooling/shielding fluid (~ 1.8 g/cm³ at 170 K)
- Outer cryostat
- TPC
- Central HV plane (photoetched phosphor bronze)
- Custom kapton signal cables (ion. + scint. readout)
- Acrylic supports and field shaping rings
- Teflon light reflector
- APD plane (avalanche photodiodes, scintillation detection)
EXO-200 crossed ionization collection wires

Photoetched wire triplets

Kapton signal cabling
• Very light (wall thickness 1.5 mm, total weight 15 kg), to minimize material.

• All parts machined under 7 ft of concrete shielding to reduce activation by cosmic rays.

TPC is ebeam welded from thin copper plates custom manufactured.

Composed from many parts, required extensive fixturing.

Only few hard to reach seams were welded using TIG welding with Se doped electrodes.
EXO-200 LAAPD specs

- Mass ~ 0.5 g/LAAPD
- Low radioactivity construction (used bare, no window, no ceramic, EXO-supplied chemicals & metals)\(^a\)
 - QE > 1 at 175 nm (NIST)
 - Gain set at 100-150
 - \(V \sim 1500\)V
 - \(\Delta V < \pm 0.5\)V
 - \(\Delta T < \pm 1\)K APD is the driver for temperature stability
 - Leakage current cold < 1\(\mu\)A
 - Capacitance ~ 200 pF at 1400 V
 - \(\phi 16\) mm active area per LAAPD

EXO-200: Installation
Xenon System
Xenon System

Design goals:
1. 20 SLPM circulation rate for continuous purification (uses heater, pump, condenser) while TPC full
2. Continuous purification with commercial (SAES) getters
3. Continuous purity monitoring of circulating gas
4. Differential pressure across TPC walls $|dP| = |P_{\text{Xe}} - P_{\text{HFE}}| < 15$ torr at all times, due to thin-walled (~1.5mm) TPC construction (driven by radiopurity requirements)
5. Xe recovery to bottle farm with compressors
6. Triply redundant cryocooling system (3x Polycold refrigerators)
• dP between Xe vessel and cryostat is maintained by the auto-feed-bleed system
• Purification through two SAES hot Zr getters
• Gas purity measured by home-built gas purity monitors
• Compressors used to recover Xe and push it back into the bottles.
• Transfer HFE from Wessington Dewar to Inner cryostat (aka inner vessel or IV)
• The cryostat is full when HFE spills out the top into the standpipe
• The polycolds cool down the cryostat and the HFE shrinks — so we keep filling until the cryostat is at 170 K (or slightly colder)
• We maintain the height in the standpipe to keep the cryostat full
• We heat the HFE ballast bottle to set the pressure in the cryostat, and therefore, the pressure of the Xe system
Purity

• **All detector materials counted for radioactivity**

• **Noble gas purifier - Zr getter**
 – Leaves < 5 part-per-billion Oxygen and Nitrogen in Xe gas

• **RGA Spectroscopy w/ Cold Trap**
 – Freeze a sample of Xenon and analyze vapor
 – Detect sub-part-per-billion levels of many impurities, including Krypton to 5 part-per-trillion
 – *Y.-R. Yen, Y8.00008: Mass spectroscopy for EXO-200*
Radon Tent

Stainless steel sheet surrounding lead shielding

Sealed with copper tape over butyl tape

Flush with aged air
Magnetically-Driven Xenon Pump

16 SLPM through a purifier at 750 torr differential

F. LePort, et al.,

arXiv: 1104.5041v1

External magnet requires no penetrations to drive piston
Calibration Source

- Segmented cable with PTFE beads
- Source attached to end in welded capsule
- Designed to navigate bends
- Reel package for calibrated insertion
- Source attached to weld in welded capsule
- Co-60 9-2009 0.19uCi
The Cosmic Ray Muon Veto
The vertical muon intensity has been measured to be: 268±6 m⁻² d⁻¹ sr⁻¹ by Esch et al., astro-ph/0408486.

The flux through a horizontal surface is 332 m⁻² d⁻¹

Monte Carlo estimated muon related background:
- $\beta\beta^{0}\nu$: 15 cnts/year
- $\beta\beta^{2}\nu$: 1100 cnts/year

These are due to secondaries with the muon missing the TPC.

Muon veto with at least 90% efficiency needed to meet background goal.
Geometrical placement is optimized by Monte Carlo.

To stay within background budget we need 90% efficiency. Depending on layout existing scintillator gives 95% to 99.8% efficiency.
31 large plastic scintillator panels, left over from the concluded KAREMEN neutrino oscillation experiment were acquired.

And were refurbished, tested, and calibrated at UA. Including gain matching of about 300 PMTs.
Comparison of surface muon response to ^{60}Co Compton edge at WIPP

response ratio \equiv response to a source at 20”/response to the same source at 40”

Similar mean implies no degradation of the optical properties of the panels on average.

Correlation is hard to see because the resolution of the measurements is large and are highly uncorrelated.
EXO-200 engineering run Dec 2010

- Check stability of all LXe/GXe systems
- Check Xe purity
- Check electronics
- Generally test detector performance
- Test Xe emergency recovery

- No front shielding
- No Rn enclosure
- No Rn trap in Xe system
- No veto counter
We inject a laser pulse (405nm laser diode) into the detector to test APD functionality through one of six fibers.

- The fibers terminate one of two Teflon diffuser disks, in place of one APD on each APD plane.
- All channels can see the light pulser.
- Light pulser is on plane 2, the ratio of photons detected on plane 2 vs on plane 1 is about 64 : 100.

We are also taking noise data during the commissioning run. The electronics have internal calibration pulses to help characterize noise.
A track from a cosmic-ray muon in EXO-200. The horizontal axis represents time (uncalibrated for now) while the vertical is the wire position (see sketch). V-wires, in front of the charge-collecting U-wires report a smaller inductive signal. The two sets of wires cross at 60° angle. The muon in the present event traverses the cathode grid, leaving a long track in one TPC module and a shorter one in the other.
A single-site energy deposition in EXO-200.

Top display is charge readout (V are induction wires and U are collection wires).

Left display is light readout. APD map Refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire.

V signal always comes before U.

Light signals precede in time the charge ones
A two-site Compton scattering event.

All scintillation light arrives at the same time, indicating that the two energy depositions are simultaneous.

The scintillation light is brighter and more localized on Side 1 where the scattering occurs.
A possible $^{214}\text{Bi} - ^{214}\text{Po}$ correlated event

There are two scintillation flashes but only one event of charge collection.

Since light always comes first, the charge site is related to the first scintillation flash. This is consistent with the β from the $^{214}\text{Bi} \rightarrow ^{214}\text{Po} + \beta + \nu$ decay in the ^{238}U chain. The second scintillation flash without a charge counterpart is consistent with the detection of the α from $^{214}\text{Po} \rightarrow ^{210}\text{Pb} + \alpha$.

The time between the two scintillation flashes is consistent with the $T_{1/2}$ of ^{214}Po (164µs). The timing is also consistent with the ^{214}Bi being very close to the cathode grid.
Early calibration source run

Various calibration sources can be brought to several positions just outside the detector.

x-y distribution of events clearly shows excess near the source location.
500 events

Can point to source using a Compton telescope technique

- Detector measures E, x, y, z for each site
- Use scattering formula

$$\phi = \arccos \left[1 - m_e c^2 \cdot \left(\frac{1}{E_\gamma - E_1} - \frac{1}{E_1} \right) \right]$$

- From each site a cone is drawn and adding up these cones produces the image to the right
The NatlXe used for the EXO-200 engineering run contains Kr

The total Kr concentration in the $^ {\text{nat}}$Xe was measured to be, using a special technique involving mass-spec*, $(42.6 \pm 5.7) \times 10^{-9} \text{ g/g}$

A.Dobi et al., arXiv:1103.2714v1
The ^{85}Kr fraction of the Kr in the detector can be seen in the low energy spectrum (for the time being only use charge readout, light-charge correlation analysis still in progress)

Energy scale set by ^{60}Co calibration

Adjust ^{85}Kr simulation to match the data in the integral from 450keV to the Q value (687keV)

→ Consistent with Mass Spec result assuming standard $^{85}\text{Kr}/\text{Kr}$ concentration of $\sim 10^{-11}$
A first look at the 85Kr endpoint

Kurie Plot of 85Kr-like events

$Q = (668 \pm 22^{\text{stat}} \pm 18^{\text{syst}})$keV

$\chi^2/\text{ndf} = 26.5/29$

Near end point other backgrounds start to emerge:
- Fit Kurie plot excluding data above 635keV
- Vary fit range to
Measured Q value in good agreement with expectation (687keV)
$^{214}\text{Bi} - ^{214}\text{Po}$ correlations in the EXO-200 detector

^{214}Bi undergoes β-decay into ^{214}Po which then undergoes α-decay with a half life of 164 μs.

^{238}U

4.8 Gy

...

^{222}Rn

3.8 d

^{218}Po

3.1 m

^{214}Pb

26.8 m

Bi-Po events are identified by their characteristic event topology which has a high probability to be detected in a single trigger window.

α: strong light signal, weak charge signal

β: weak light signal, strong charge signal
α and β particles can be identified by their ionization/scintillation ratio (right plot).
• 15 Bi-Po events were found in a commissioning run.
• 6 of them occurred on or near the cathode whereas the others are located in the bulk of detector.

The average time between the β and α decay (left plot) is 242 μs which corresponds to τ = 271 μs.
Considering the low statistics, this is in good agreement with the true value of τ=237 μs.

Accurate detection efficiency still under study but the 214Bi decay rate is consistent with expectation before the Rn trap is commissioned.
Sensitivity

- **EXO 200**

<table>
<thead>
<tr>
<th>case</th>
<th>Mass (tonne)</th>
<th>efficiency (%)</th>
<th>Run Time (yr)</th>
<th>$\sigma_E/@2.5$MeV (%)</th>
<th>Radioactive (events)</th>
<th>$T^{\nu}_{1/2}$ (yr, 90% CL)</th>
<th>Majorana mass meV</th>
<th>QRPA*</th>
<th>NSM$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXO-200</td>
<td>0.2</td>
<td>70</td>
<td>2</td>
<td>1.6</td>
<td>40</td>
<td>6.4×10^{25}</td>
<td>109</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>

- **EXO Full**

<table>
<thead>
<tr>
<th>case</th>
<th>Mass (tonne)</th>
<th>efficiency (%)</th>
<th>Run Time (yr)</th>
<th>$\sigma_E/@2.5$MeV (%)</th>
<th>$2\nu\beta\beta$ Background (events)</th>
<th>$T^{\nu}_{1/2}$ (yr, 90% CL)</th>
<th>Majorana mass meV</th>
<th>QRPA*</th>
<th>NSM$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative</td>
<td>1</td>
<td>70</td>
<td>5</td>
<td>1.6</td>
<td>0.5 (use 1)</td>
<td>2×10^{27}</td>
<td>19</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Aggressive</td>
<td>10</td>
<td>70</td>
<td>10</td>
<td>1</td>
<td>0.7 (use 1)</td>
<td>4.1×10^{28}</td>
<td>4.3</td>
<td>5.3</td>
<td></td>
</tr>
</tbody>
</table>

Summary

- Provided motivation for looking $0\nu\beta\beta$ decay
- Motivation for EXO 200
- Detector is build (still have to finish Radon tent and second front lead wall)
- The muon veto system is running
- Took an engineering run with natural Xe in December
- We are now taking data with enriched 136Xe
D.Auty, M.Hughes, R.MacLellan, A.Piepke, K.Pushkin, M.Volk,
Dept of Physics & Astronomy, U. of Alabama, Tuscaloosa AL
M.Auger, D.Franco, G.Giroux, R.Gornea, M.Weber, J-L.Vuilleumier,
High Energy Physics Lab,Bern, Switzerland
P.Vogel Physics Dept Caltech, Pasadena CA
A.Coppens, M.Dunford, K.Graham, P.Gravelle, C.Hägemann, C.Hargrove,
F.Leonard, K.McFarlane, C.Oullet, E.Rollin, D.Sinclair, V.Strickland,
Carleton University, Ottawa, Canada
C.Benitez-Medina, S.Cook, W.Fairbank Jr., K.Hall, N.Kaufhold, B.Mong,
T.Walton, Colorado State U., Fort Collins CO
L.Kaufman, Indiana University
M.Moe, Physics Dept UC Irvine, Irvine CA
V.Stekhanov, O.Zeldovich, ITEP Moscow, Russia
E.Beauchamp, D.Chauhan, B.Cleveland, J.Farine, D.Hallman, J.Johnson, U.Wichoski, M.Wilson,
Laurentian U., Canada
C.Davis, A.Dobi, C.Hall, S. Slutsky, Y-R. Yen, U. of Maryland, College Park MD
J. Cook, T.Daniels, K.Kumar, A.Pocar, K.Schmoll, C.Sterpka, D.Wright, UMass, Amherst
D.Leonard, University of Seoul, Republic of Korea
M.Breidenbach, R.Conley, W.Craddock, S.Herrin, J.Hodgson, J.Ku, D.Mackay, A.Odian, C.Prescott,
P.Rowson, K.Skarpaas, M.Swift, J.Wodin, L.Yang, S.Zalog, SLAC, Menlo Park CA
P.Barbeau, L.Bartoszek, J.Davis, R.DeVoe, M.Dolinski, G.Gratta, F.LePort, M.Montero Diez,
A.Müller, R.Neilson, A.Rivas, A. Saburov, K.O’Sullivan, D.Tosi, K.Twelker, Physics Dept Stanford U., Stanford CA
W.Feldmeier, P.Fierlinger, M.Marino, TUM, Garching, Germany
EXO-200 material screening

- Stringent requirements on K/Th/U concentrations on materials inside cryostat
- In particular:

<table>
<thead>
<tr>
<th>Component</th>
<th>K 10^{-9} g/g</th>
<th>Th 10^{-12} g/g</th>
<th>U 10^{-12} g/g</th>
<th>210Po Bq/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Novec HFE-7000, 1-methoxyheptafluoropropane</td>
<td><1.08</td>
<td><7.3</td>
<td><6.2</td>
<td></td>
</tr>
<tr>
<td>Lead shielding</td>
<td><7</td>
<td><1</td>
<td><1</td>
<td>17-20</td>
</tr>
<tr>
<td>Copper</td>
<td><55</td>
<td><2.4</td>
<td><2.9</td>
<td></td>
</tr>
<tr>
<td>Acrylic</td>
<td><2.3</td>
<td><14</td>
<td><24</td>
<td></td>
</tr>
<tr>
<td>TPC grid wires</td>
<td><90</td>
<td>47 +/- 2</td>
<td>320 +/- 2</td>
<td></td>
</tr>
</tbody>
</table>

David Auty INFO 11
Shielding

- Shielding MUCH HARDER for $0\nu\beta\beta$ 2.5 MeV electromagnetic signal than for low energy nuclear recoil DM search
- *Thin walled* ~ 1.4 mm thick Cu TPC surrounded by
 - 4000kg HFE7000 (~50 cm), density ~ 1.4 g/cm3
 - 25 cm Pb shielding on all sides
- For comparison with DM experiments, assume N-ton spherical LXe $0\nu\beta\beta$ detector, using 50% LXe for shielding

<table>
<thead>
<tr>
<th>Incident γ energy</th>
<th>γ attenuation factor (1-ton spherical LXe)</th>
<th>γ attenuation factor (10-ton spherical LXe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 keV</td>
<td>36</td>
<td>2200</td>
</tr>
<tr>
<td>2.5 MeV</td>
<td>1.08</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Calibration Source Insertion

Installed at WIPP
Choice of isotope

EXO will search for the decay $^{136}\text{Xe} \rightarrow ^{136}\text{Ba} + 2e^-$.

Current best limit from R.Bernabei et. al., Phys.Lett. 546B, 23 (2002): $T_{1/2}^{0\nu} > 1.2 \times 10^{24}$ y at 90% C.L.

Natural isotopic abundance of 8.9% with inexpensive enrichment.

Q-value of 2458 keV gives favorable phase space and a $0\nu\beta\beta$ region of interest above most naturally occurring γ-rays.

Noble gas/liquid detector allows continuous purification.

The EXO Collaboration has 200 kg of xenon enriched to 80% in ^{136}Xe.
LXe Data Show Anticorrelation between Scintillation and Ionization

Energy resolution: 3.0% @ 570 keV or 1.6% @ Q(ββ)