The Turn-on of EXO-200

Steven Herrin
SLAC National Accelerator Laboratory

On behalf of the EXO Collaboration

APS April Meeting 2011
Enriched Xenon Observatory

- EXO (Enriched Xenon Observatory) is a series of experiments to look for the neutrinoless double beta decay of xenon 136

 - Only occurs if neutrino is a Majorana particle
 - Half life goes like $\left(T_{1/2}^{0\beta\beta}\right)^{-1} \propto \left\langle m_{\nu}\right\rangle^2$ (and ν mass is small!)

 $$\left\langle m_{\nu}\right\rangle = \sum_{i=1}^{3} \left| U_{e,i} \right|^2 m_i \epsilon_i$$

 - Violates lepton number conservation

- EXO-200 is a TPC utilizing 200 kg liquid xenon installed at the WIPP site (~1600 mwe) near Carlsbad, NM
EXO-200 TPC

- Xenon serves as both source and detector
- Energy deposited in xenon creates:
 - Charge: drifted to wires
 - Light: collected by LAAPDs
 - (The two signals can be combined)
Engineering Run

- Engineering Run ~Dec 2010
- Natural xenon
- TPC fully operational, but not in low background mode:
 - No front Pb wall
 - No Rn free enclosure
 - No Rn trap
 - Muon veto not running
- Test:
 - Electronics
 - Emergency Procedures
 - Stability
 - etc.
An Event in EXO-200

- Charge signal is picked up on crossed wires (shown above)
 - V wires (induction) see it before U wires (collection)
- Light signal is shown at right. This event occurs in TPC 2, and so most light is there, but some is collected in TPC 1
- Light signal precedes charge signal
A 2-site Event in EXO-200

- Gamma rays can Compton scatter in the TPC, creating multiple site events
- All scintillation light arrives simultaneously, indicating multiple-site event and not coincident single-site events
- For this event, both sites were in TPC 1
Particle ID and ^{214}Bi-^{214}Po Decays

- Alpha particles have large dE/dX. The large energy deposition means more ions recombine, producing more scintillation light than betas do.
- Beta decays produce more ionization signal than alphas.
- ^{214}Bi β-decay is followed by a ^{214}Po α-decay, $\tau = 237$ μs. This has a topology that can be identified in the detector and likely occurs in a single trigger frame.
More 214Bi-214Po Decays

- Ionization/scintillation ratios allow clear discrimination between α and β events
- A simple check of engineering run data finds 15 Bi-Po events
 - Efficiency still under study, but seems rate is consistent with what is expected with no Rn trap on system
 - 6 near cathode, the remainder in bulk
 - Mean lifetime consistent with $^{237}\mu$s

![Graph](image)
Muons in the TPC

- Muons leave ionization trail in the xenon

- This muon traverses the cathode, leaving ionization in both TPC halves

- We can identify these trails and get a rate that agrees with expectations at our depth
\textbf{85}Kr in the TPC

- The low energy spectrum is consistent with 85Kr contamination in the natural xenon used for the engineering run
- Plot shows simulated spectrum scaled to match data in 450 – 687 keV region
 - 450 keV chosen to be well above trigger
 - Q = 687 keV

- Rate consistent with \(\sim 10^{-11} \) abundance of 85Kr/Kr based on mass spectrometer\(^\dagger\) analysis of xenon

\(\chi^2/\text{n.d.f.} = 46.2/39 \)

\(^\dagger\)A.Dobi et al., arXiv:1103.2714v1
Q value for ^{85}Kr

- At higher energies, other backgrounds start to contaminate spectrum
- Fit a line to Kurie plot between 450 and 635 keV to obtain Q value consistent with 687 keV
- Energy scale verified with ^{60}Co source data

\[Q = (668 \pm 22^{\text{stat}} \pm 18^{\text{sys}}) \text{ keV} \]

\[\chi^2/\text{n.d.f.} = 26.5/29 \]

PRELIMINARY
For calibration, various sources can be placed in positions near the TPC

- e.g. 60Co just outside the cathode along +x axis
Compton telescope of 60Co

- Using Compton telescope technique, we can verify location of source
 - (Also for finding radioactive hot spots)

- Detector measures energy and location
 \[
 \phi = \arccos \left[1 - m_e c^2 \left(\frac{1}{E_y - E_1} - \frac{1}{E_1} \right) \right]
 \]

- This gives a cone from each site, add up to produce plot on right
Conclusions and Status

- Detector operates well!
- We are beginning to understand detector
- We have techniques to understand backgrounds and calibrate detector once we begin taking physics data

Current status:
- Paused to get into low background mode (front Pb wall, Rn enclosure, muon veto)
- Filled with xenon again
- Physics data taking ~now
The EXO Collaboration

D.Auty, M.Hughes, R.MacLellan, A.Piepke, K.Pushkin, M.Volk,
Dept of Physics & Astronomy, U. of Alabama, Tuscaloosa AL
M.Auger, D.Franco, G.Giroux, R.Gornea, M.Weber, J-L.Vuilleumier,
High Energy Physics Lab, Bern, Switzerland
P.Vogel, Physics Dept Caltech, Pasadena CA
A.Coppens, M.Dunford, K.Graham, P.Gravelle, C.Hägemann, C.Hargrove,
F.Leonard, K.McFarlane, C.Oullet, E.Rollin, D.Sinclair, V.Strickland,
Carleton University, Ottawa, Canada
C.Benitez-Medina, S.Cook, W.Fairbank Jr., K.Hall, N.Kaufhold, B.Mong,
T.Walton, Colorado State U., Fort Collins CO
L.Kaufman, Indiana University
M.Moe, Physics Dept UC Irvine, Irvine CA
D.Akimov, I.Alexandrov, V.Belov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Karelin, A.Kovalenko,
A.Kuchenkov, V.Stekhanov, O.Zeldovich, ITEP Moscow, Russia
E.Beauachamp, D.Chauhan, B.Cleveland, J.Farine, D.Hallman, J.Johnson, U.Wichoski, M.Wilson,
Laurentian U., Canada
C.Davis, A.Dobi, C.Hall, S. Slutsky, Y-R. Yen, U. of Maryland, College Park MD
J. Cook, T.Daniels, K.Kumar, A.Pocar, K.Schmoll, C.Sterpka, D.Wright, UMass, Amherst
D.Leonard, University of Seoul, Republic of Korea
M.Breidenbach, R.Conley, W.Craddock, S.Herrin, J.Hodgson, J.Ku, D.Mackay, A.Odian, C.Prescott,
P.Rowson, K.Skarpaas, M.Swift, J.Wodin, L.Yang, S.Zalog, SLAC, Menlo Park CA
P.Barbeau, L.Bartoszek, J.Davis, R.Devoe, M.Dolinski, G.Gratta, F.LePort, M.Montero Diez,
A.Müller, R.Neilson, A.Rivas, A. Saburov, K.O’Sullivan, D.Tosi, K.Twelker, Physics Dept Stanford U., Stanford CA
W.Feldmeier, P.Fierlinger, M.Marino, TUM, Garching, Germany

2011-05-03 S. Herrin - EXO-200 - APS April 2011 15
Backup Slide 1: Sensitivity

<table>
<thead>
<tr>
<th>Case</th>
<th>Mass (ton)</th>
<th>Eff. (%)</th>
<th>Run Time (yr)</th>
<th>$\sigma_E/E @ 2.5$MeV (%)</th>
<th>Radioactive Background (events)</th>
<th>$T_{1/2}^{0v}$ (yr, 90%CL)</th>
<th>Majorana mass (eV) QRPA</th>
<th>NSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXO-200</td>
<td>0.2</td>
<td>70</td>
<td>2</td>
<td>1.6</td>
<td>40</td>
<td>6.4×10^{25}</td>
<td>0.133†</td>
<td>0.186*</td>
</tr>
</tbody>
</table>

* Caurier, *et. al.*, arXiv:0709.2137v1
Backup Slide 2: Double Beta Spectrum

Backup Slide 3: 85Kr

Beta decay of 85Kr is unique first forbidden
Backup Slide 4: Cryostat

HFE7000 cooling/shielding fluid
Backup Slide 5: TPC Internals
Backup Slide 6: Pictures

WIPP Site