EXO status and prospects

Jesse Wodin for the EXO collaboration

SLAC
Topics

• EXO-200 introduction and status
• Barium tagging
• Full EXO conceptual design
Neutrinoless double beta decay $0\nu\beta\beta$

Emitted ν_i is mostly right-handed, with small left handed component $\sim m_i/E_\nu$ absorbed at second vertex.

$$\sum_i m_i U_{ei}^2 \equiv \langle m_{\beta\beta} \rangle$$

Effective Majorana mass is a coherent sum over mass eigenstates

$$\left(T_{1/2}^{0\nu\beta\beta} \right)^{-1} = G_{0\nu\beta\beta} (Q_{\beta\beta}, Z) M_{0\nu\beta\beta} \langle m_{\beta\beta} \rangle^2$$

Decay rate observed in a detector

$0\nu\beta\beta$ requires that neutrinos are **massive Majorana particles, and lepton number non-conservation**

$$\bar{\nu}_i = \nu_i \quad m_\nu \neq 0 \quad \Delta L \neq 0$$
Experimental $\beta\beta$ observables

Energy spectrum of two emitted electrons (both $\beta\beta$ modes shown, can be distinguished with good $\Delta E/E$)

Charged daughter nucleus residing in detector after $0\nu\beta\beta$ event

Experimental $0v\beta\beta$ sensitivity

To maximize sensitivity:
- large mass
- low backgrounds
- high detection efficiency
- good energy resolution

Additionally, identification of the daughter isotope would reject most sources of background and confirm $0v\beta\beta$ on a single event basis.
Measuring $0\nu\beta\beta$ with EXO-200

- 200kg 136Xe (80% enrichment) liquid phase (-113° C), both source and detector of $0\nu\beta\beta$
- $Q_{\beta\beta}^{Xe-136}$ ~ 2.5 MeV $\beta\beta$ endpoint energy
- $0\nu\beta\beta$ electrons deposit energy as charge (slow) and scintillation (fast)
- Collect scintillation on APDs
- Collect ionization on wires -> charge preamplifiers
- Energy reconstruction, PID, from ionization+scintillation ($\Delta E/E = 1.4\%$ at $Q_{\beta\beta}$)
- Event position from charge distribution and $t_{SCINT}t_{ION}$ (useful for Ba tagging on full EXO)
EXO-200 TPC and cryostat

- Inner cryostat filled with 50 cm HFE7000 cooling/shielding fluid (~ 1.8 g/cm³ at 170 K)
- Central HV plane (photoetched phosphor bronze)
- Outer cryostat
- Custom kapton signal cables (ion. + scint. readout)
- TPC (1.5m x 1.5m)
- Central HV plane (photoetched phosphor bronze)
- Teflon light reflector
- Acrylic supports and field shaping rings
- APD plane (avalanche photodiodes, scintillation detection)

10/2/2010
Shielding

• Shielding MUCH HARDER for $0\nu\beta\beta$ 2.5 MeV electromagnetic signal than for low energy nuclear recoil DM search

• *Thin walled ~ 1.4 mm thick Cu TPC* surrounded by
 – 4000kg HFE7000 (~50 cm), density ~ 1.4 g/cm3
 – 25 cm Pb shielding on all sides

• For comparison with DM experiments, assume N-ton spherical LXe $0\nu\beta\beta$ detector, using 50% LXe for shielding

<table>
<thead>
<tr>
<th>Incident γ energy</th>
<th>γ attenuation factor (1-ton spherical LXe)</th>
<th>γ attenuation factor (10-ton spherical LXe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 keV</td>
<td>36</td>
<td>2200</td>
</tr>
<tr>
<td>2.5 MeV</td>
<td>1.08</td>
<td>1.2</td>
</tr>
</tbody>
</table>
EXO-200 material screening

- Stringent requirements on K/Th/U concentrations on materials inside cryostat
- In particular:

<table>
<thead>
<tr>
<th>Component</th>
<th>K 10^{-9} g/g</th>
<th>Th 10^{-12} g/g</th>
<th>U 10^{-12} g/g</th>
<th>210Po Bq/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Novec HFE-7000, 1-methoxyheptafluoropropane</td>
<td><1.08</td>
<td><7.3</td>
<td><6.2</td>
<td></td>
</tr>
<tr>
<td>Lead shielding</td>
<td><7</td>
<td><1</td>
<td><1</td>
<td>17-20</td>
</tr>
<tr>
<td>Copper</td>
<td><55</td>
<td><2.4</td>
<td><2.9</td>
<td></td>
</tr>
<tr>
<td>Acrylic</td>
<td><2.3</td>
<td><14</td>
<td><24</td>
<td></td>
</tr>
<tr>
<td>TPC grid wires</td>
<td><90</td>
<td>47 +/- 2</td>
<td>320 +/- 2</td>
<td></td>
</tr>
</tbody>
</table>
EXO-200 Xe handling system: designed around 1.4mm thin-walled TPC, constant purification

Design goals:
1. **20 SLPM circulation rate** for continuous purification (uses heater, pump, condenser) while TPC full
2. **Continuous purification** with commercial (SAES) getters
3. **Continuous purity monitoring** of circulating gas (GPMs – see A. Odian’s talk on Wed.)
4. Differential pressure across TPC walls $|dP| = |P_{Xe} - P_{HFE}| < 15$ torr at all times, due to thin-walled (~1.5mm) TPC construction (driven by radiopurity requirements)
5. **Xe recovery to bottle farm with compressors**
6. **Triply redundant cryocooling system** (3x Polycold refrigerators)
EXO-200 detector construction

Signal cabling penetrates TPC and cryostat (no “feedthroughs”)

Cathode

Field shaping rings
EXO-200 crossed ionization collection wires

Photoetched wire triplets

Kapton signal cabling
Looking into EXO-200 detector without APDs
EXO-200 LAAPD specs

- Mass ~ 0.5 g/LAAPD
- Low radioactivity construction (used bare, no window, no ceramic, EXO-supplied chemicals & metals)\(^a\)
 - QE > 1 at 175 nm (NIST)
 - Gain set at 100-150
 - V ~ 1500V
 - ΔV < ±0.5V
 - ΔT < ±1K APD is the driver for temperature stability
- Leakage current cold < 1μA
- Capacitance ~ 200 pF at 1400 V
- φ16 mm active area per LAAPD

EXO-200 APD installation
EXO-200 TPC after cable and APD installation, before final endcap welding
EXO-200 TPC ready for packaging at Stanford
EXO-200 installation site: WIPP

- EXO-200 installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM
- 1600 mwe flat overburden (2150 feet, 650 m)
- Salt mine for low-level radioactive waste storage
- Salt “rock” low activity relative to hard-rock mine

\[\Phi_\mu \sim 1.5 \times 10^5 \frac{yr^{-1} m^{-2} sr^{-1}}{m} \]
\[U \sim 0.048 \text{ ppm} \]
\[Th \sim 0.25 \text{ ppm} \]
\[K \sim 480 \text{ ppm} \]

EXO-200 infrastructure
Active muon veto

- Active muon veto system installed 2009
- Testing and integration into DAQ underway
TPC arrival & installation at WIPP

• TPC shipped from Stanford to WIPP 11/2009 in shielded container
• TPC installed in cryostat 12/2009
• LXe line re-hookup, followed by DAQ testing at WIPP
• Natural Xe run scheduled to begin late-2010
EXO-200 Majorana mass $<m_{\beta\beta}>$ sensitivity

Assumptions
1. 200 kg of 136Xe, 80% enrichment
2. Low but finite radioactive background: 20 events/yr in ±2σ interval around $Q=2.481$ MeV
3. Negligible background from $2\nu\beta\beta$ ($T_{1/2} > 1\times10^{22}$ yr, Bernabei et al.)

<table>
<thead>
<tr>
<th>Case</th>
<th>Mass [ton]</th>
<th>Efficiency [%]</th>
<th>Run time [yr]</th>
<th>σ_e/E @ 2.5 MeV [%]</th>
<th>Radioactive background [events]</th>
<th>$T_{1/2}^{0\nu\beta\beta}$ [yr, 90% CL]</th>
<th>Neutrino majorana mass [eV]</th>
<th>QRPA</th>
<th>NSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXO-200</td>
<td>0.2</td>
<td>70</td>
<td>2</td>
<td>1.6</td>
<td>40</td>
<td>6.4x10^{25}</td>
<td>0.135 (1)</td>
<td>0.109 (2)</td>
<td></td>
</tr>
</tbody>
</table>

If Klapdor’s observations are correct, EXO-200, 2-yr runtime:
1. 46 events on top of 40 (QRPA) → 5σ measurement
2. 170 events on top of 40 (NSM) → 11.7σ measurement

Full EXO R&D

- Full EXO ~ ton scale gas or liquid TPC
- “Tagging” of $0\nu\beta\beta$ daughter nucleus 136Ba ion for background rejection – R&D underway
 - Ion extraction from a TPC
 - Ion trapping
 - Ion identification with
 - Laser Induced Fluorescence (LIF)
 - Resonant ionization spectroscopy (RIS)
 - Single ion RIS
 - Others...
- GXe TPC R&D underway
 - 10 bar GXe TPC under construction
 - Test tracking, ionization+scintillation readout, $\Delta E/E$, Ba tagging interface, etc.

“Tagging” 136Ba ion in real time may allow for rejection of all backgrounds except $2\nu\beta\beta$.
Single $^{136}\text{Ba}^+$ identification with Laser Induced Fluorescence

Goal: extract and ID single ^{136}Ba ions in real time from liquid or gas TPC for background rejection

- $^{136}\text{Xe} \rightarrow ^{136}\text{Ba}^{++} + 2\text{e}^-$
- $^{136}\text{Ba}^{++} \rightarrow ^{136}\text{Ba}^+$ in LXe
- Isolate single ion in an ion trap
- Identification and dynamics of single Ba^+ in ion traps well studied (1)
- 493 nm, 650 nm lasers cycle trapped ion electronic states
- LIF $\sim 10^7$ photons/sec/ion into 4π

$^{136}\text{Ba}^+$ level structure

Single trapped Ba\(^{+}\) in a gas-filled quadrupole ion trap

- Observed LIF of a single Ba\(^{+}\) in a buffer gas filled ion trap (~ 10\(^{-3}\) torr He, some Xe)
- ~ 9\(\sigma\) observation at 25s storage time

B. Flatt et al., NIM A 578 (2007) 409
Ba\(^+\)/Ba\(^{++}\) single ion sources being developed

- Use recoils from a very thin \(\alpha\) emitter \(^{148}\text{Gd}\) to dislodge Ba atoms from a carefully designed layer of BaF\(_2\) (arXiv:1008.3422, accepted for publication in Rev. Sci. Instr.)
- A fraction of the Ba emitted is Ba\(^+\)
- Multiple sources under development
Ba transport & tagging by Resonant Ionization Spectroscopy

• Ba+ or Ba++ is electrostatically attracted (from LXe) onto a clean substrate (Si works well)
• Substrate is removed into vacuum
• 1064 nm YAG laser pulse desorbs Ba
• ~ 1us later a pair of laser pulses of appropriate freq. re-ionize Ba+
• Current testing uses stationary substrate and Ba is deposited over time using the Gd-driven source (104-105 ions deposited)
TOF spectrum (data) from RIS test

- Background already very small
- Efficiency > 10^{-3} (deposit 10^5, wait hrs., get > 100 out)
- This gives us a signal to tune on
Next step: do it one ion at a time

- High efficiency (~80%) ion optics (both injection and extraction)
- “Top hat” YAG beam (lower background)
- Only Ti and Si construction (lower background)
- Possibly no ion trap required
- Many other Ba tagging fronts, but no time here
Full EXO GXe TPC R&D in progress

Goal: Test tracking, $\Delta E/E$, electronics, ionization + scintillation readout, Ba tagging interface in 1-10 bar GXe

- 10 bar GXe cylindrical TPC
- 1 MeV e^- source
- Segmented readout (tracking) on both ends
- Electroluminescent gap + CsI photocathode for both charge and scintillation readout
- Replaceable endcaps for alternate charge/light readout technologies, Ba tagging interface

• Field cage length: 780 mm
• Field cage diameter: 535 mm
Coupling a quadrupole trap to a TPC

- Ion transport, stopping, through quadrupoles well known to heavy-ion nucl. phys.
- Eventual goal is to test full pipeline efficiency for single ion extraction, ID
Full EXO conceptual design

• LXe core
 – Liquid Xenon (136Xe)
 • Fiducial Mass = 10 Tonnes (overall geometry almost independent of fiducial mass)
 • Volume = 3,400 liters
 • Temperature = 165K
 – Cu vessel for LXe
 • Single vessel, 170cm x 160cm x 170cm
 • 3 equally sized internal chambers

• TPC – Time Projection Chamber
 – Central Cathode in each chamber
 • Max drift distance = 25cm
 – Ionization and scintillation readout
 – Coincidence measurement by identifying Ba$^{++}$ Daughter
Full EXO conceptual design with shielding and infrastructure

- Because of conveyance system constraints at DUSEL, the EXO design must be made from smaller components (that fit inside the #6 Winze) and assembled underground.

EXO support bldg.

EXO detector

#6 Winze
5.4 Tonnes Capacity

1,000+ Tonnes Material
Full EXO TPC installation

- **Outer Cryo**
 - 19.1mm Ti
 - 10 Tonnes

- **Inner Cryo**
 - 6.35mm Ti
 - 2 Tonnes

- **HFE**
 - 70 Tonnes

- **TPC**
 - LXe/Cu
 - 10+9 Tonnes

- **Ba^{++} Tagging**
 - 10 Tonnes

- **Lead Shield**
 - 0.5m Pb
 - 430 Tonnes

- **Inner Tank**
 - 0.25m HDPE
 - 60 Tonnes
 - 320 m3 H$_2$O
 - 320 Tonnes

- **Outer Tank**
 - 12.7mm SS
 - 110 Tonnes
 - 2,200 m3 H$_2$O
 - 2,175 Tonnes

Total Mass = ~711 Tonnes (not including H$_2$O)
EXO Majorana mass $<m_{\beta\beta}>$ sensitivity

Assumptions
1. 136Xe, 80% enrichment
2. Intrinsic low backgrounds & Ba tagging eliminate all radioactive backgrounds
3. Energy resolution used to separate $0\nu\beta\beta$ from $2\nu\beta\beta$ modes (select 0ν events in +/- 2σ interval around 2.458 MeV endpoint)
4. $2\nu\beta\beta (T_{1/2} > 1\times10^{22}$ yr, Bernabei et al.)

<table>
<thead>
<tr>
<th>Case</th>
<th>Mass [ton]</th>
<th>Efficiency [%]</th>
<th>Run time [yr]</th>
<th>$\sigma_E/E @ 2.5$ MeV [%]</th>
<th>$2\nu\beta\beta$ background [events]</th>
<th>$T_{1/2}^{0\nu\beta\beta}$ [yr, 90% CL]</th>
<th>Neutrino majorana mass [meV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative</td>
<td>1</td>
<td>70</td>
<td>5</td>
<td>1.6 (3)</td>
<td>0.5 (~1)</td>
<td>2.0x1027</td>
<td>19 (1)</td>
</tr>
<tr>
<td>Aggressive</td>
<td>10</td>
<td>70</td>
<td>10</td>
<td>1.0 (4)</td>
<td>0.7 (~1)</td>
<td>4.1x1028</td>
<td>4.3 (1)</td>
</tr>
</tbody>
</table>

(3) $\sigma_E/E = 1.6\%$ obtained in EXO R&D, Conti et al., Phys. Rev. B 68 (2003) 054201
(4) $\sigma_E/E = 1.0\%$ considered aggressive but realistic guess with large light collection
EXO collaboration

K. Barry, E. Niner, A. Piepke
Physics Dept., U. of Alabama, Tuscaloosa AL, USA
P. Vogel
Physics Dept., Caltech, Pasadena CA, USA
A. Bellerive, M. Bowcock, M. Dixit, K. Graham, C. Green, C. Hagemann, C. Hargrove, E. Rollin, D. Sinclair, V. Strickland
Carleton University, Ottawa, Canada
C. Benitez-Medina, S. Cook, W. Fairbank Jr., K. Hall, B. Mong
Colorado State U., Fort Collins CO, USA
M. Moe
Physics Dept., UC Irvine, Irvine CA, USA
ITEP Moscow, Russia
Laurentian U., Canada

H. Breuer, C. Hall, L. Kaufman, D. Leonard, S. Slutsky, Y-R. Yen
U. of Maryland, College Park MD, USA
J. Cook, K. Kumar, P. Morgan, A. Pocar, K. Schmoll, C. Sterpka
U. of Massachusetts, Amherst, Amherst MA, USA
M. Auger, G. Giroux, R. Gornea, F. Juget, G. Lutter, J-L. Vuilleumier, J-M. Vuilleumier
Laboratory for High Energy Physics, Bern, Switzerland
SLAC, Menlo Park CA, USA
Physics Dept., Stanford University, Stanford CA USA
P. Fierlinger
Techn. Univ. Munich, Germany